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Abstract

Heat flow patterns in the presence of natural convection have been analyzed with Bejan’s heatlines concept. Momentum and energy
transfer are characterized by streamfunctions and heatfunctions, respectively such that streamfunctions and heatfunctions satisfy the
dimensionless forms of momentum and energy balance equations, respectively. Finite element method has been used to solve the velocity
and thermal fields and the method has also been found robust to obtain the streamfunction and heatfunction accurately. The unique
solution of heatfunctions for situations in differential heating is a strong function of Dirichlet boundary condition which has been
obtained from average Nusselt numbers for hot or cold regimes. The physical significance of heatlines have been demonstrated for a
comprehensive understanding of energy distribution and optimal thermal management via analyzing three cases. Case 1 involves the uni-
form and non-uniform heating of bottom wall with cooled side walls. The studies illustrate that the heat flow primarily occurs from the
central regime of the bottom wall to a very small regime of the top portion of side walls. A large portion of central regime of cold side
walls do not receive significant amount of heat. In order to maximize the thermal energy distribution, the distributed heating at the mid-
dle portions of the bottom and side walls have been considered in case 2 and heatlines clearly depict the distributions of heat from the hot
walls to the large regimes of the cold wall. Further case 3 illustrates the enhanced heat flows in presence of heated bottom and left side
walls. Heatline is found as an effective numerical tool to visualize energy distribution in order to establish a suitable heating strategy.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection in enclosed cavities has received sig-
nificant attention due to many engineering applications [1–
3]. Steady natural convection within a differentially heated
square enclosure has a major role in food preservation at
an optimal temperature. Analysis of food sterilization in
various cavities has also been studied by earlier investiga-
tors [4,5].

Investigations of natural convection in a square enclo-
sure has been carried out for past two decades by several
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investigators (Patterson and Imberger [6], Nicolette et al.
[7], Hall et al. [8], Hyun and Lee [9], Fusegi et al. [10], Lage
and Bejan [11,12], and Xia and Murthy [13]). November
and Nansteel [14] and Valencia and Frederick [15] have
shown a specific interest to focus on a natural convection
within a rectangular enclosure wherein a bottom heating
and/or a top cooling are involved. Studies on natural con-
vection in rectangular enclosures heated from below and
cooled along a single side or both sides have been carried
out by Ganzarolli and Milanez [16]. Kimura and Bejan
[17] also studied natural convection in differentially heated
corner region. They established that the flow field is rela-
tively insensitive to whether the wall temperature varies
continuously or discontinuously through the corner point.
Later, the case of heating from one side and cooling from
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Nomenclature

g acceleration due to gravity, m s�2

k thermal conductivity, W m�1 K�1

L side of the square cavity, m
N total number of nodes
p pressure, Pa
P dimensionless pressure
Pr Prandtl number
R residual of weak form
Ra Rayleigh number
T temperature, K
T h temperature of hot bottom wall, K
T c temperature of cold vertical wall, K
u x component of velocity
U x component of dimensionless velocity
v y component of velocity
V y component of dimensionless velocity
X dimensionless distance along x coordinate
x distance along x coordinate

Y dimensionless distance along y coordinate
y distance along y coordinate

Greek symbols

a thermal diffusivity, m2 s�1

b volume expansion coefficient, K�1

c penalty parameter
C boundary
h dimensionless temperature
m kinematic viscosity, m2 s�1

q density, kg m�3

U basis functions
w streamfunction
P heatfunction

Subscripts

i residual number
k node number
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the top has been analyzed by Aydin et al. [18] who investi-
gated the influence of aspect ratio for air-filled rectangular
enclosures. Also, Kirkpatrick and Bohn [19] examined
experimentally the case of high Rayleigh number natural
convection in a water-filled cubical enclosure heated simul-
taneously from below and from the side. Corcione [20]
studied natural convection in a air-filled rectangular enclo-
sure heated from below and cooled from above for a vari-
ety of thermal boundary conditions at the side walls.
Numerical results were reported for several values of both
width-to-height aspect ratio of the enclosure and Rayleigh
number. Recently, Basak et al. [21] and Roy and Basak [22]
investigated natural convection within a square enclosure
for hot bottom wall and various hot/cold side walls with
insulated top wall. However, optimal heating policies for
all these situations have not been reported. Current work
fills the gap by analyzing the ‘Bejan’s heatlines’ for visual-
izing energy flow due to natural convection in a square
enclosure.

The heatline is the best way to visualize the heat transfer
in two dimensional convective transport processes. The
streamlines are the best tools to visualize the fluid motions
in two dimensional incompressible flow. Similarly, the
heatlines, which are also heat flux lines, represent the tra-
jectory of heat energy. In general, the heat flux lines are
normal to the isotherms for heat transfer due to pure con-
duction through isotropic media. Energy flow within vari-
ous regimes especially for convective heat transport
processes can be best visualized by heatlines whereas iso-
therms are unable to give guideline for energy flows. The
heatlines are mathematically represented by heatfunctions
and the proper dimensionless forms of heatfunctions are
closely related to overall Nusselt numbers.
The heatline concept was first introduced by Kimura
and Bejan [23] and Bejan [24]. Various applications were
further studied by Bello-Ochende [25], Costa [26–29] and
Deng and Tang [30]. Bejan [31] also reviewed some earlier
works on heatlines and illustrated the use of heatline con-
cept to visualize various physical situations. Till date, the
heatline concept has not been used extensively for analyz-
ing convective heat transport processes except for very
few applications. Application of heatlines was shown for
thermomagnetic convection in electroconductive melts
[32,33]. The heatline concept was further used for unsteady
heat transfer assuming that steady state version of energy
balance equation is satisfied at a given instant [34]. Appli-
cation of heatlines have also been carried out for investiga-
tions in polar coordinates [35–39]. The heatline concept has
also been applied for analyzing heat transfer involving
forced convection [40,41] and turbulent flows [42].

The aim of this article is to analyze energy flows due to
natural convection in a square enclosure with hot bottom
wall and cold side walls in presence of insulated top walls.
The main objective of this fundamental study is to examine
thermal mixing near the central core of the cavity especially
for food processing applications. Further, the influence of
distributed heat source will be investigated to enhance ther-
mal mixing via the trajectory of heat flow using ‘Bejan’s
heatlines’ concept. The thermal mixing and heat flow will
also be investigated for two adjacent hot walls with a cold
side wall in presence of insulated top wall. In the current
study, we have used Galerkin finite element method with
penalty parameter to solve the non-linear coupled partial
differential equations of flow and temperature fields. The
Galerkin method is further employed to solve the Poisson
equation for streamfunctions and heatfunctions. It may
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be noted that Galerkin finite element method has been used
here for the first time to evaluate the heatfunction. The
junction of hot and cold walls correspond to mathematical
singularity which is quite common for many practical situ-
ations. The heatfunctions for such type of situations
involve implementation of exact boundary conditions at
those singular points. Current work analyzes series of such
practical problems as a first attempt and generic boundary
conditions on heatfunctions have been derived based on
overall heat balance and average Nusselt numbers on hot
and cold walls. The heatlines and thermal mixing will be
illustrated for commonly used fluid with Pr ¼ 0:7–1000 in
various industrial applications.
2. Mathematical formulation and simulation

2.1. Velocity and temperature distributions

The physical domain is shown in Fig. 1. Thermophysical
properties of the fluid in the flow field are assumed to be
constant except the density variations causing a body force
term in the vertical component of momentum equation.
The Boussinesq approximation is invoked for the fluid
properties due to the variation of density with temperature
and the density variation cause a body force in the vertical
momentum equation as given below. Therefore, the tem-
perature field is coupled to the flow field via the body force
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Fig. 1. Schematic diagram of the physical system: (a) case 1: heated bottom
(0:25 6 X 6 0:75) and vertical walls (0:375 6 Y 6 0:625); (c) case 3: heated bo
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steady two-dimensional natural convection flow in the
square cavity using conservation of mass, momentum
and energy can be written with following dimensionless
variables or numbers

X ¼ x
L
; Y ¼ y

L
; U ¼ uL

a
; V ¼ vL

a
; h ¼ T � T c

T h � T c

;

P ¼ pL2

qa2
; Pr ¼ m

a
; Ra ¼ gbðT h � T cÞL3Pr

m2

ð1Þ

as:

oU
oX
þ oV

oY
¼ 0; ð2Þ

U
oU
oX
þ V

oU
oY
¼ � oP

oX
þ Pr

o
2U

oX 2
þ o

2U

oY 2

� �
; ð3Þ

U
oV
oX
þ V

oV
oY
¼ � oP

oY
þ Pr

o2V

oX 2
þ o2V

oY 2

� �
þ RaPrh; ð4Þ

U
oh
oX
þ V

oh
oY
¼ o2h

oX 2
þ o2h

oY 2
ð5Þ

with the boundary conditions for velocities
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The boundary conditions for temperature with cases 1–3
(see Figs. 1a–c) are

h ¼ 1 ðuniform heatingÞ or

sin pX ðnon-uniform heating; bottom wallÞ
h ¼ 0 ðfor cold wallÞ
oh
oY
¼ 0 ðfor adiabatic wallÞ ð7Þ

Note that, in Eqs. (2)–(7), X and Y are dimensionless coor-
dinates varying along horizontal and vertical directions,
respectively; U and V are dimensionless velocity compo-
nents in the X and Y directions, respectively; h is the dimen-
sionless temperature; P is the dimensionless pressure; Ra

and Pr are Rayleigh and Prandtl numbers, respectively.
The momentum and energy balance equations (Eqs. (3)–

(5)) are solved using the Galerkin finite element method.
The continuity equation (Eq. (2)) will be used as a con-
straint due to mass conservation and this constraint may
be used to obtain the pressure distribution. In order to
solve Eqs. (3) and (4), we use the penalty finite element
method where the pressure P is eliminated by a penalty
parameter c and the incompressibility criteria given by
Eq. (2) which results in
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Fig. 2. Streamfunction ðwÞ, heatfunction ðPÞ and temperature (h) contours for
Pr ¼ 0:71 and Ra ¼ 105 (benchmark problem). Clockwise and anti-clockwise
heatfunctions, respectively.
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� �
: ð8Þ
The continuity equation (Eq. (2)) is automatically satisfied
for large values of c. Typical values of c that yield consis-
tent solutions are 107. Using Eq. (8), the momentum bal-
ance equations (Eqs. (3) and (4)) reduce to
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The system of Eqs. (5), (9) and (10) with boundary condi-
tions is solved by using Galerkin finite element method [43].
Expanding the velocity components ðU ; V Þ and tempera-
ture ðhÞ using basis set fUkgN

k¼1 as,
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U �
XN

k¼1
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V �
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XN

k¼1

hkUkðX ; Y Þ; ð11Þ

for

0 6 X ; Y 6 1;

the Galerkin finite element method yields the following
non-linear residual equations for Eqs. (9), (10) and (5),
respectively, at nodes of internal domain X:
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Bi-quadratic basis functions with three point Gaussian
quadrature is used to evaluate the integrals in the residual
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equations. In Eqs. (12) and (13), the terms containing the
penalty parameter ðcÞ are evaluated with two point Gauss-
ian quadrature (reduced integration penalty formulation,
Reddy [43]). The non-linear residual Eqs. (12)–(14) are
solved using Newton–Raphson procedure to determine
the coefficients of the expansions in Eq. (11). The detailed
solution procedure may be found in earlier works [21,22].

2.2. Streamfunction and heatfunction

The fluid motion is displayed using the streamfunction w
obtained from velocity components U and V. The relation-
ships between streamfunction, w [44] and velocity compo-
nents for two dimensional flows are

U ¼ ow
oY

and V ¼ � ow
oX

; ð15Þ

which yield a single equation

o
2w
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þ o

2w

oY 2
¼ oU
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: ð16Þ

Using the above definition of the streamfunction, the posi-
tive sign of w denotes anti-clockwise circulation and the
clockwise circulation is represented by the negative sign
of w. Expanding the streamfunction (w) using the basis
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set fUg as w ¼
PN

k¼1wkUkðX ; Y Þ and the relation for U

and V from Eq. (11), the Galerkin finite element method
yields the following linear residual equations for Eq. (16).
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The no-slip condition is valid at all boundaries as there is
no cross flow, hence w ¼ 0 is used as residual equations
at the nodes for the boundaries. The bi-quadratic basis
function is used to evaluate the integrals in Eq. (17) and
w’s are obtained by solving the N linear residual Eq. (17).

The heat flow within the enclosure is displayed using the
heatfunction P obtained from conductive heat fluxes � oh
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�
,
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�
as well as convective heat fluxes (Uh, V h). The heat-

function satisfies the steady energy balance equation (Eq.
(5)) [23] such that
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oP
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¼ Uh� oh
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which yield a single equation
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Using the above definition of the heatfunction, the positive
sign of P denotes anti-clockwise heat flow and the clock-
wise heat flow is represented by the negative sign of P.
Expanding the heatfunction (P) using the basis set fUg
as P ¼

PN
k¼1PkUkðX ; Y Þ and the relation for U, V and h

from Eq. (11), the Galerkin finite element method yields
the following linear residual equations for Eq. (19).
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The residual equation (Eq. (20)) is further supplemented
with various Dirichlet and Neumann boundary conditions
in order to obtain an unique solution of Eq. (19). Neumann
boundary conditions for P are obtained for isothermal
(hot or cold) or sinusoidally heated wall as derived from
Eq. (18) and the normal derivatives (n � rP) are specified
as follows:

(a) for bottom wall
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¼ p cos pX ðsinusoidal heatingÞ ð21Þ
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The top insulated wall may be represented by Dirichlet
boundary condition as obtained from Eq. (18) which is
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simplified into oP
oX ¼ 0 for an adiabatic wall. A reference

value of P is assumed as 0 at X ¼ 0; Y ¼ 1 and hence
P ¼ 0 is valid for Y ¼ 1; 8X . It may be noted that, the
unique solution of Eq. (19) is strongly dependent on the
non-homogeneous Dirichlet conditions. Most of earlier
works [26,30] are limited within two adiabatic walls where
Dirichlet boundary condition is either 0 or Nu at the adia-
batic walls. Current work is based on the situations of dif-
ferential heating of walls and Dirichlet conditions for P
have been obtained based on heat flux balance i.e., the total
heat gained by the cold wall should be equal to the total
heat loss from the hot wall. Therefore, following Dirichlet
boundary conditions have been derived for cases 1–3.

(i) case 1:

P ¼ Nul; X ¼ 0; Y ¼ 0

¼ Nur; X ¼ 1; Y ¼ 0
ð23Þ
(ii) case 2:

P¼ 0:25Nub;1; X ¼ 0:25; Y ¼ 0

¼ 0:25Nub;3; X ¼ 0:75; Y ¼ 0

¼ 0:375Nul;1; X ¼ 0; Y ¼ 0:375
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Fig. 6. Streamfunction ðwÞ, heatfunction ðPÞ and temperature (h) contours fo
Clockwise and anti-clockwise flows are shown via negative and positive signs
¼ 0:375Nul;3; X ¼ 0; Y ¼ 0:625

¼ 0:375Nur;1; X ¼ 1; Y ¼ 0:375

¼ 0:375Nur;3; X ¼ 1; Y ¼ 0:625 ð24Þ

(iii) case 3:

P ¼ Nur; X ¼ 1; Y ¼ 0 ð25Þ

It may be noted that Nul and Nur are average Nusselt
numbers for left and right walls, respectively for cases 1

and 3. For case 2, Nub;1;Nub;3 are average Nusselt numbers
for the left and right portions of cold bottom wall, respec-

tively; Nul;1;Nul;3 are average Nusselt numbers for the bot-
tom and top portions of cold left wall, respectively and

Nur;1;Nur;3 are average Nusselt numbers for the bottom
and top portions of cold right wall, respectively.

3. Results and discussion

3.1. Numerical tests

The computational domain consists of 20� 20 bi-qua-
dratic elements which correspond to 41� 41 grid points.
The bi-quadratic elements with lesser number of nodes
smoothly capture the non-linear variations of the field vari-
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ables which are in contrast with finite difference/finite vol-
ume solutions available in the literature [10–12]. In order to
assess the accuracy of the numerical procedure, we have
carried out computations based on the grid size ð41� 41Þ
for a square enclosure filled with air (Pr ¼ 0:71) subjected
to hot left wall and cold right wall in presence of insulated
horizontal walls at Ra ¼ 105 as shown in Fig. 2 and the
results are in well agreement with the previous work [30].
Although the homogeneous Neumann boundary condi-
tions are valid (Eq. (22)) for the isothermal walls, but the
uniqueness of the solution of Eq. (19) depends on Dirichlet
conditions. Hence, P ¼ 0 is assumed at the bottom wall
(Y ¼ 0; 8X ) and consequently, P ¼ Nu (where Nu is the
average Nusselt number) is obtained for the top wall
(Y ¼ 1; 8X ). In general, the Dirichlet boundary conditions
for P of adiabatic walls are naturally obtained for the test
case via integrating Eq. (18). It is found that the average
Nusselt number (Nu) based on current methodology is 4.6
whereas Nu ¼ 4:56 was obtained in the previous work
[30]. This situation involves high circulation at the center
due to significant convection.

It is also observed that large number of heatlines appear
near the hot left wall signifying high heat flux towards the
cold right wall. The heatlines near the cold wall is almost
horizontal signifying the conductive transport.
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Fig. 7. Streamfunction ðwÞ, heatfunction ðPÞ and temperature (h) contours for
and Ra ¼ 105. Clockwise and anti-clockwise flows are shown via negative and
The sign of heatfunction needs special mention. The
solution of heatfunction (Poisson equation) is strongly
dependent on non-homogeneous Dirichlet boundary con-
dition (P ¼ Nu) and the sign of heatfunction is governed
by the sign of ‘non-homogeneous’ Dirichlet condition. It
is observed that near the top wall the sign of heatfunction
is positive (as also assumed in the earlier work [30]) and the
sign is negative in the core where the heatfunctions denote
strong convective heat transfer. It may be noted that signs
of streamfunction and heatfunction are identical for the
convection dominated heat flows as also seen in Fig. 2. A
detailed explanation for this situation may be found in ear-
lier articles [23,30].

A detailed computations have been carried out for var-
ious values of Pr (Pr ¼ 0:026–1000) and Ra ¼ 103–105 with
uniform and non-uniform heating of walls. For uniform
heating situation, the jump discontinuities in Dirichlet type
wall boundary conditions at the junction of hot and cold
walls (see Fig. 1) correspond to computational singulari-
ties. In the current investigation, Gaussian quadrature
based finite element method provides smooth solutions in
the computational domain including the corner regions as
evaluation of residuals depends on interior Gauss points
and thus the effect of corner nodes are less pronounced in
the final solution. Current solution scheme produces grid
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invariant results as discussed in our previous article [22].
The convergences tests have been carried out for all such
cases and it is observed that 41� 41 computational grids
are adequate for smooth solutions.

3.2. Case 1: Uniform and non-uniform heating of bottom

wall

Fig. 3 illustrates streamfunction, isotherms and heat-
functions for Pr ¼ 0:026 and Ra ¼ 103 with uniform heat-
ing of bottom wall in presence of cold side walls. Due to
cold vertical walls, fluids rise up from middle portion of
the bottom wall and flow down along two vertical walls
forming two symmetric rolls inside the cavity as denoted
by signs of streamfunctions. At Ra ¼ 103, the magnitudes
of streamfunctions are small signifying conduction domi-
nant heat transfer within the cavity and the temperature
contours are smooth lines which span the entire cavity.

The heatlines in Fig. 3 illustrate that the heat flow occurs
mainly due to conduction as the heatlines are perpendicu-
lar to the cold or hot walls. The two bottom corner edges
have infinite heat flux as the cold wall is directly in contact
with the hot bottom wall. It may be noted that
P ¼ Nul ¼ 2:68 at X ¼ 0; Y ¼ 0 and P ¼ Nur ¼ �2:68 at
X ¼ 1; Y ¼ 0 and the sign of heatfunctions are dependent
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Fig. 8. Streamfunction ðwÞ, heatfunction ðPÞ and temperature (h) contours for
and Ra ¼ 105. Clockwise and anti-clockwise flows are shown via negative and
on these two corner boundary conditions. Our sign conven-
tion is based on the fact that the heat flow occurs from the
hot to cold wall, and the positive heatfunction corresponds
to anticlockwise heat flow. It may also be noted that, Nu
denotes the total or cumulative heat flux at the two bottom
corner points and therefore, the magnitudes of heatfunc-
tions decrease from the bottom edges to the central sym-
metric line where the no heat flux condition is also valid
due to symmetric boundary conditions for temperature.

It is interesting to observe that, heatline with P ¼ 0:5
connects within X ¼ 0:2 and Y ¼ 0:25 and that implies that
more than 50% of the heat flux from the hot wall to cold
wall is confined within the bottom portion of the cold wall.
Consequently, the less heat flow occurs near the top por-
tion of the cold walls. Therefore, the thermal boundary
layer was found to develop near the bottom edges, and
the thickness of boundary layer is larger at the top portion
of the cold wall signifying less heat transfer from the hot
wall. It may also be noted that as 50% heat energy flows
from the regime 0 6 X 6 0:2 and 1 P X P 0:8 of the hot
wall and the regime near to central regime of the hot wall
remain hot as seen from parabolic temperature contours
near the bottom wall. The heatlines clearly illustrate that
the bottom portion of the cold wall receives most of heat
energy from the hot wall whereas the top portion of the
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cavity remains cool due to less transport of heat energy
from the bottom wall. It is interesting to note that the foun-
tain of heatlines from the central regime of the bottom wall
is not strong enough to reach the regimes of top wall due to
weak circulation and conduction dominated heat transfer.

Fig. 4 illustrates the streamfunction, heatfunction and
isotherms for Pr ¼ 0:026 and Ra ¼ 105. At higher Ra, the
intensity of fluid motion has been increased as indicated
by larger magnitudes of streamfunctions. The primary vor-
tex appears near the top wall whereas a weak secondary
vortex appears near the bottom wall.

The enhanced convection causes larger heat energy to
flow from the bottom wall to the top portion of the vertical
wall. It may be noted that the significant convection causes
distortion of heatlines as compared with conduction dom-
inant heat transfer (see Fig. 3), and the shape of heatlines
near the core is identical with the streamlines signifying
the convection dominant heat flow due to large intensity
of circulations as shown with large values of
streamfunctions.

It is interesting to note that highly dense heatlines
occur at the central regime of the cavity and the dense
heatlines signify the larger heat flow. The vertical walls
with 1 P Y P 0:58 correspond to P ¼ 0–0:6 illustrating
the significant heat flow whereas the regime with
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Fig. 9. Streamfunction ðwÞ, heatfunction ðPÞ and temperature (h) contours fo
Clockwise and anti-clockwise flows are shown via negative and positive signs
0:58 P Y P 0:45 correspond to P ¼ 0:6–0:65 which signi-
fies small heat absorption. The lower portion of the vertical
wall (0 6 Y 6 0:35) receives heat from the hot bottom wall
as P varies within 0.7–2.89. Therefore, the top and bottom
portions of the vertical walls are hotter than the central
regime of the vertical wall as seen in temperature contour
plots. The heatlines near two corners of the bottom wall
are almost circular which signifies that the conduction is
dominant in those regimes. The multiple cells of heatlines
near the top and bottom portions are due to multiple circu-
lation cells. The secondary vortex recirculates heat energy
from the central regime. The stronger primary vortex
enhances the mixing process and therefore uniform temper-
ature distribution occurs near the upper portion of the cen-
tral regime. Hence, this regime has insignificant thermal
gradient as h varies within 0.2–0.3.

Fig. 5 shows the streamfunction, heatfunction and iso-
therms for Pr ¼ 0:7 and Ra ¼ 105. The intensity of fluid
motion has been found stronger than that with
Pr ¼ 0:026. It may be noted that the maximum magnitude
of the streamfunction is around 6 with Pr ¼ 0:026 whereas
the maximum values is around 14 with Pr ¼ 0:7. It is also
interesting to observe that the single symmetric vortex pat-
terns with eyes near the center of each half occur for
Pr ¼ 0:7.
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The enhanced convection due to larger Pr is reflected in
heat flows as seen in heatline distributions. Similar to pre-
vious case with Pr ¼ 0:026, the central regime consists of
dense heatlines which signify large amount of heat flow
due to enhanced convection. It is interesting to observe that
the upper regime of each vertical wall (1 P Y P 0:5)
receive larger heat as P varies within 0–2.1 whereas P var-
ies within 2.1–2.7 for the lower portion (0:5 P Y P 0:1).
Therefore, temperature contours are stretched towards
the vertical wall near the regime which corresponds to
1 P Y P 0:4. It may also be noted that the conduction
regime occurs near a very small portion of two corners of
the bottom wall due to enhanced convection. Due to dense
heatlines from the hot bottom wall, the isotherms are also
pushed towards the bottom wall and the regime near the
bottom wall is cooler than that for Pr ¼ 0:026 with
Ra ¼ 105. Due to increased circulation near the central
regime, the heatlines at the central regime are dense and
that reflect maximal heat transfer or enhanced thermal
mixing in the central regime resulting in large uniform tem-
perature as seen in isotherm contour plots. The tempera-
ture at the top portion of the central regime vary within
0.4–0.45. It is also interesting to note that due to enhanced
circulations, the heatlines show large magnitudes of heat-
functions, and consequently, the temperature contour with
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Clockwise and anti-clockwise flows are shown via negative and positive signs
h ¼ 0:4 is pushed towards the cold vertical wall. As a final
remark, the top portion of the cold wall receives heat from
the bottom wall and this regime also receive heat due to
enhanced circulations. As a result, large thermal boundary
layer thickness occurs near the regime Y ¼ 0:2.

Fig. 6 shows the distributions for Pr ¼ 1000 and
Ra ¼ 105. It is observed that streamfunction and heatfunc-
tion contours are similar to the case with Pr ¼ 0:7. How-
ever, it is interesting to observe that the eyes of vortices
occur near the bottom portion of the wall as higher Pr

implies lower thermal diffusivity. Due to circulations with
larger intensity as seen with higher values of heatfunction
compared to the previous cases, the thermal boundary lay-
ers are suppressed near two corners of the bottom wall as
seen in Fig. 6. The convective heat transfer as illustrated
with higher values of heatfunctions causes enhanced ther-
mal mixing and 50% of the regime (near the top portion)
remain at h ¼ 0:4–0:5.

Figs. 7 and 8 show streamfunction, heatfunction and
temperature distributions for non-uniform heating of bot-
tom wall with Pr ¼ 0:026–1000 and Ra ¼ 105. For
Pr ¼ 0:026, the streamlines and heatlines exhibit qualita-
tively similar trends to the uniform heating case as seen
in Figs. 4 and 7 and the maximum value of streamfunction
is found to be 5 for both uniform and non-uniform heating
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cases. It is observed that heatlines connect the regimes near
to corner of bottom wall to the lower portion of the vertical
wall up to Y ¼ 0:38 and heatlines from Y P 0:48 connect
to the central portion of the bottom wall. It is also interest-
ing to observe that the heatlines are less dense near the top
portion of the cavity as can be seen from heatline trajecto-
ries. Therefore, fluid is cooler than that with the uniform
heating case at the top portion of the cavity as displayed
by isotherm contours (see Figs. 4 and 7). Consequently,
the temperature (h) at the top portion of the central regime
varies within 0.1–0.2. Due to non-uniform heating, the
regimes near the bottom corner points are cold and that
results in larger conduction regime for non-uniform heat-
ing case. Therefore, non-uniform heating may not be favor-
able for optimal circulation of heat energy for fluid with
small Pr.

As Pr increases from 0.026 to 1000, in Figs. 7 and 8 it is
found that the heatline contours become dense along the
central regime, i.e., the heat flow becomes higher and the
larger part of the top portion of the vertical wall receives
heat energy from the bottom wall. However, in any case,
uniform heating causes higher temperature near the top
central regime than non-uniform heating. In addition, lar-
ger conduction regime and less dense contours occur near
the bottom corners for non-uniform heating situations.
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Fig. 11. Streamfunction ðwÞ, heatfunction ðPÞ and temperature (h) contours f
Clockwise and anti-clockwise flows are shown via negative and positive signs
Therefore, these regimes remain cooler irrespective of Pr

and Ra.
It is observed that the temperature rise in the top por-

tion of the central regime is up to 50% of the temperature
of the bottom wall for both uniform and non-uniform
heating cases. This is due to the fact that the smaller heat
flow from the bottom wall is confined within the top por-
tion of the vertical wall. In addition, the eyes of convective
circulation cell is pushed towards the bottom wall for lar-
ger Pr at higher Ra. In order to achieve enhanced thermal
mixing near the central core (which would be useful for
food sterilization) studies on the role of distributed heating
of both vertical walls and bottom walls have been carried
out as discussed in the next section.

3.3. Case 2: Distributed uniform heating at bottom and

vertical walls

Fig. 9 illustrates streamfunction, heatfunction and tem-
perature distribution for Pr ¼ 0:026 and Ra ¼ 103. It may
be noted that the uniform heat source is applied at
0:25 6 X 6 0:75 for the bottom wall and at
0:375 6 Y 6 0:625 for both the vertical walls. Common
to cases 1 and 2 with uniform heating are the identical total
heat sources. The importance of case 2 is based on the role
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of distributed heat sources for the global heatline trajecto-
ries. Similar to case 1, the intensity of flow circulation is
smaller signifying conduction dominant heat flow within
the cavity. Due to distributions of heat source at the center
of vertical walls, multiple circulation cells, however small,
tend to develop near the top and bottom walls. The tem-
perature distributions show several closed loop contours
bounded across the hot walls as seen in Fig. 9. It is also
observed that the temperature contours within the domain
are smooth lines due to conduction dominant heat transfer.
The visualization of heat flow via heatlines are quite non-
trivial due to islands of heat sources along the vertical
and bottom walls and not yet reported in literature. As
mentioned earlier, the unique solution of heatfunctions
(Eq. (19)) depend on the exactness of Dirichlet boundary
conditions and for case 2, the Dirichlet conditions are
required at the junctions of cold-hot sectors as given by
Eqs. (24).

The heatlines in Fig. 9 illustrate that heat flow mainly
occur from the central regimes of the bottom and vertical
walls. The heatlines are dense near the bottom half of the
central heat source of the vertical wall. It may be noted that
the regimes near the bottom corner receive the heat flux
both from the vertical and bottom walls. Therefore, the
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Clockwise and anti-clockwise flows are shown via negative and positive signs
maxima in h is found as 0.4 near bottom corners. In con-
trast, the heatlines are less dense near the top portion of
vertical walls. In addition, very few heatlines from the bot-
tom wall reach to a very small regime of top portion of ver-
tical walls. Therefore, the temperature near the top portion
of the vertical wall varies within 0.1–0.2. It is interesting to
note that, the top portion of the central regime corresponds
to h ¼ 0:3–0:4 due to distributed heat sources even with
conduction dominant heat transfer. Most of the heatlines
near the central regime of the hot bottom wall are confined
within the bottom wall and the bottom portion of the ver-
tical wall due to larger regime of heat source at bottom
wall. It is also observed that, a larger portion near the cen-
tral regime of the bottom wall corresponds to h ¼ 0:5–1.

Fig. 10 illustrates the streamfunction, heatfunction and
temperature distribution for Pr ¼ 0:026 and Ra ¼ 105.
Due to combined effect of distributed heat sources and
enhanced convection, multiple circulation cells occur near
the top, bottom and vertical walls. The enhanced convec-
tion and multiple circulation cells cause the isotherm to
be compressed along the walls. It is interesting to observe
that the temperature within the central regime varies within
0.5–1 and this illustrates the enhanced thermal mixing
which is predominantly due to distributed heating effects.
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Further, the heatline contours would be useful to explain
the heat flux distribution throughout the cavity.

The heatlines clearly illustrate the heat flux distributions
from hot walls to the cold walls throughout the domain. It
is observed that the heatlines from the central regime of the
bottom wall (0:25 6 X 6 0:75) are distributed within
0:87 6 Y 6 1 at the vertical wall. It is interesting to note
that larger amount of heat is transported from the bottom
wall to the top portion due to enhanced convective heating
effect for Ra ¼ 105. The central hot regime of the vertical
walls (0:375 6 Y 6 0:625) distributes heat a small portion
of the top portion of the vertical wall. Also, the heat flux
from the hot portion of the vertical wall is distributed to
the bottom portion of the cold regime of the vertical wall
as well as cold regimes of the bottom wall. This induces
enhanced thermal mixing leading to larger heat distribu-
tions to the cold regimes. In contrast, the heat from bottom
wall is distributed at both vertical walls and near the bot-
tom corner points for case 1. The heat flows are also
observed from the vertical wall both at top and bottom
portions for Ra ¼ 103 due to conduction dominant heat
transfer (see Fig. 9).

Fig. 11 illustrates the distributions for Pr ¼ 1000 and
Ra ¼ 105. The strength of circulations is larger due to high
Pr. It is also observed that similar to Pr ¼ 0:026, the sec-
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Fig. 13. Streamfunction ðwÞ, heatfunction ðPÞ and temperature (h) contours f
Clockwise and anti-clockwise flows are shown via negative and positive signs
ondary circulation appears due to heated middle portion
of the vertical wall. Due to enhanced buoyancy effects,
the intensity of primary circulation cells is larger and the
secondary circulation cells get suppressed for Pr ¼ 1000.
It is interesting to observe that the temperature contours
are compressed to the side and bottom walls, and a large
portion of the central regime corresponds to h ¼ 0:5–0:6.
The enhanced thermal mixing is further explained with
the distributions of heatlines. The enhanced convection dis-
tributes large amount of heat at the top portion of the ver-
tical walls and it is observed that the regime with
0:6 6 Y 6 1 has the heatlines with magnitudes varying
within 0–2. The large amount of heat is transferred to this
regime due to heat transport from the hotter regime of bot-
tom and side walls. The hot portion of side walls distributes
heat up to the regime near to bottom corner points.
Although the enhanced convection with larger heat energy
distribution occurs with Pr ¼ 1000, but the regime near the
bottom corners remains cold as this regime does not receive
heat from hot walls which contrast the situation with
Pr ¼ 0:026.

A very small regime near the bottom corners contain the
cold fluid. However, due to overall larger heat distribu-
tions, the temperature in the core regime of the enclosure
is larger than that with case 1 for identical Pr and Ra.
0.2 0.4 0.6 0.8 1

Π

or uniform heating corresponding to case 3 with Pr ¼ 0:026 and Ra ¼ 105.
of streamfunctions and heatfunctions, respectively.



T. Basak, S. Roy / International Journal of Heat and Mass Transfer 51 (2008) 3486–3503 3501
The temperature contours illustrate that the temperature
in the core varies within 0.5–0.9 whereas the temperature
in the core varies within 0.3–0.9 for case 1.

3.4. Case 3: Uniform heating of bottom wall and left vertical

wall

Fig. 12 illustrates the streamfunction, heatfunction and
temperature contours for Pr ¼ 0:026 with Ra ¼ 102. It is
worthwhile to mention that the heat inputs are exactly
two times than that for cases 1 and 2. Similar to cases 1
and 2, the intensity of flow circulation is smaller for
Ra ¼ 102 signifying the conduction dominant heat transfer
and the isotherms are almost parallel except near the bot-
tom wall. Consequently, the heatlines are almost parallel
and they are perpendicular to hot/cold walls due to con-
duction dominant heat transfer. It is interesting to observe
that the significant amount of heat flow from the hot verti-
cal wall occurs from the regime with 1 P Y P 0:45 and the
magnitudes of heatfunctions vary within 0–0.3. In contrast,
the bottom portion of hot vertical wall (0:45 6 Y 6 0)
remain hotter as the heatfunctions vary within 0.3–0.42.
The left half of the hot bottom wall (0 6 X 6 0:5) distrib-
ute less heat as heatfunctions vary within 0.42–0.6 whereas
the right half has the heatfunction within 0.6–3.24. There-
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Clockwise and anti-clockwise flows are shown via negative and positive signs
fore, a large portion near the left bottom corner remains
hot due to less amount of heat flow. It is also interesting
to observe that the upper portion of the cold wall
(1 P Y P 0:5) receives lesser heat from the hot vertical
wall as the magnitudes of heatfunction vary within 0–0.5
whereas the lower portion of the cold wall receives signifi-
cant heat as magnitudes of heatfunctions vary within 0.5–
3.24. Therefore the regime near to lower portion of the cold
wall heats faster than the upper portion as also seen from
temperature contours.

Fig. 13 illustrates streamfunction, heatfunction and tem-
perature distributions for Pr ¼ 0:026 and Ra ¼ 105. Similar
to Fig. 12, primary circulation cell occurs within the core.
In addition, small secondary circulation cells also appear
at the corner regimes. It may be noted that the maximum
value of streamfunction is 12 due to high Ra. The large val-
ues of streamfunctions illustrate that the convection is
dominant within the large regime of core. The enhance
convective effect further influences the heat transport espe-
cially from the hot bottom wall. It may be noted that the
regime in the bottom wall (0:35 6 X 6 1) distributes heat
to a large regime of the cold wall (0:75 P Y P 0). On the
other hand, the left hot wall distributes heat to a very small
regime of the hot wall (0:75 6 Y 6 1). The convective
transport of heat near the left top corner point also occurs
0.2 0.4 0.6 0.8 1

Π

or uniform heating corresponding to case 3 with Pr ¼ 1000 and Ra ¼ 105.
of streamfunctions and heatfunctions, respectively.
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due to secondary circulations. Compression of temperature
contours are seen near the regime of the cold wall,
0:4 6 Y 6 0:8, due to large amount of heat flow as seen
from the dense heatlines in that regime. It may be interest-
ing to note that conduction dominant regime occurs near
the bottom portion of the cold wall and the amount of heat
flow is also small. Therefore, the temperature contours are
less compressed near bottom portion of the cold wall.

Fig. 14 illustrates the streamfunction, heatfunction and
temperature contours for Pr ¼ 1000 and Ra ¼ 105. Similar
to Fig. 13, a large primary circulation cell is found to occur,
but secondary circulation cells are completely absent. Due to
high Pr, the intensity of circulation is larger. The heatlines
show similar features as that of Fig. 13. Due to larger convec-
tion, large amount of heat is transferred to the top portion of
the cold wall. Therefore, temperature contours are more
compressed at the top regime of cold wall for Pr ¼ 1000 than
that for Pr ¼ 0:026. Overall, the temperature contours also
illustrate that more than 70% of the enclosure has large tem-
perature with h ¼ 0:6–0:9 for higher Ra (see Figs. 13 and 14).

4. Conclusion

The heatlines and streamlines are extensively analyzed
to demonstrate the heat flow for differentially and distrib-
uted heating of walls within cavities. The unique solutions
of heatfunctions for differentially or distributed heating of
walls are obtained for the first time in this work and the
heat flow within the cavity is precisely governed by Dirich-
let boundary conditions obtained from average Nusselt
numbers for each hot or cold sector.

Initially, the enclosure with bottom heating in presence
of two cold vertical walls and adiabatic top wall has been
considered (case 1). The heat transfer is primarily conduc-
tion dominant for Ra ¼ 103 and the regime near to bottom
portion of the cold vertical walls corresponds to higher
temperature due to large amount of heat flow from the bot-
tom wall. The multiple circulation cells appear for
Pr ¼ 0:026 and multiple cells circulate heat within the cen-
tral and bottom portions of the vertical walls. The strength
of flow increases for fluid with larger Pr (Pr ¼ 0:7; 1000)
and at larger Pr, the secondary circulations disappear. At
high Ra ðRa ¼ 105Þ, the top portion of the vertical wall
receives heat from the bottom wall due to enhanced con-
vective heating effects whereas the bottom portion of the
cold wall continues to receive heat from the bottom wall.
Although heat flow occurs along the central symmetric line
up to the top portion of the vertical wall, but due to circu-
lation, the heatlines show circular contours near the core
where the heat flux is generally recirculated without heat
transport from hot bottom wall. Therefore, the top portion
of the central regime are at h ¼ 0:4–0:5 and a large portion
of near the cold walls remains at h 6 0:3.

Based on the heatline trajectories, it has been decided to
analyze the heating of fluid with distributed heat source at
the bottom and side walls (case 2). The distributed heat
source causes the heat flow from the hot regime to cold
regime along both the vertical and bottom walls. Thus a
large portion of the vertical wall receives heat energy either
from central regimes of the bottom wall or from the central
regimes of the vertical wall. Due to enhanced heat distribu-
tion the entire central regime is maintained at higher tem-
perature with h ¼ 0:5–0:7 especially at large Ra. Analysis
also has been carried out with heated bottom and left verti-
cal walls (case 3). It is observed that the heated bottom wall
distributes large amount of heat to the cold wall whereas the
heated left wall distributes heat near the top portion of the
cold wall. Due to enhanced heating of walls with case 3, the
core is at large temperature whereas the cold fluid is
observed at a small regime near the right corner.

The heatlines concept has been implemented for the first
time which includes differentially heated cavities with vari-
ous combination of heating sources. The heatlines trajecto-
ries are powerful to visualize the direction of heat flow and
strategy of distributed heat source has been evolved as a
direct consequence of ‘Bejan’s heatlines’ concept. The food
processing often requires food to be kept at a large temper-
ature for a long time and heatline concept has been found
immense importance to control heat flow via tuning vari-
ous types of heat inputs at the walls.
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